Example documents using the digital scientific notation Leibniz

Leibniz is a digital scientific notation under development. It should be considered experimental at this point.

This repository contains example documents that use Leibniz. These documents are meant to illustrate what a digital scientific notation looks like, and how it can be used.

All content in this repository is published under the Creative Commons Attribution licence.

In the Leibniz documents, computationally relevant definitions and rules are shown on a blue background. Computed content is shown on a green background.

An important distinction in Leibniz that is often neglected in traditional mathematical notation is the one between values and variables. For example, a time *value* t refers to a specific moment in time, whereas a time *variable* t stands for an *arbitrary* time value. In Leibniz, variables are typeset in italics.

Each example also contains a link to an XML version, which contains just the definitions and rules. It is meant to be processed by software. There is also a link to the source code, which is written in an extension of the Scribble language, which is the documentation language of the Racket software ecosystem.

Leibniz by example is the first example you should look at, because it contains many explanations of Leibniz itself. You can also consult the machine-readable version of the equations it contains as an XML file, and have a look at the source code from which both the human-readable and the machine-readable versions are generated.

Other examples:

- Basic mathematical functions (XML, source code)
- Euclid’s GCD algorithm for the greatest common divisor of two natural numbers (XML, source code)
- Heron’s algorithm for computing square roots (XML, source code)
- Boolean algebra, (XML, source code])
- Masses and mass units (XML, source code)
- A more general framework for physical quantities (XML, source code)
- A framework for point mechanics (XML, source code) that builds on the quantities framework
- An application of the mechanics framework: the motion of a mass on a spring (XML, source code)